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An algorithm is described for balancing the steady-state operation of a separative cascade 
of the up/down type wherein each head stream is fed upward one or more stages, and each 
tail stream is fed downward one or more stages. The cascade incorporates refluxing and 
multiple feed points. Of primary importance is the treatment of multiple isotopes, which 
requires an iterative solution procedure. Only half of the separation factors can be arbitrarily 
specified, the other half are found as part of the solution process. 

1. INTRODUCTION 

Cascade theory is well developed for elements with only two dominant isotopes 
[ 11, such as uranium or hydrogen. Many elements, however, have three or more 
isotopes, including both uranium [2,3] and hydrogen. Newer techniques for waste 
material management, such as laser processing, may well require small cascades for 
the separation of elements with many isotopes. 

Cascade theory for an arbitrary number of isotopes is scant [2,3]. Furthermore, 
published work on multiple isotope cascade algorithms is non-existant. The objective 
of this work is to bridge this gap. The extension of techniques [ 1,4, 51 for the 
separation of binary mixtures to the multiple isotope situation unexpectedly proved to 
be far from straightforward. 

Section 2 provides the basic equations and the numerical procedures for balancing 
a steady-state cascade. The cascade’s configuration is of the up/down type, recently 
introduced by Olander [‘6]. An iterative procedure is used to obtain an accurate, 
consistent solution. In practice, the algorithm worked well for cascades as large as 20 
stages, the largest cascade so far considered. A key issue dealt with in Section 2 is the 
treatment of the a! and p separation factors that incorporate the physics of the process 
[ 11. Section 3 concludes the article with an illustrative example. 

2. FORMULATION 

2.1. Equations 

The mole fraction, or assay, of isotope i entering stage j is denoted by X,, where 
the element involved may be in either atomic or molecular form. Similarly, X$ and 
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Xi; respectively represent the heads and tails assay of the material leaving stagej. The 
amount of isotopic material entering and leaving the stage is Lj, Lj, and LB. The 
heads and tails designation is arbitrary, particularly when there are mire than two 
isotopic forms. Nevertheless, this terminology is convenient and well understood [I ]. 
To help fix ideas, a four-stage cascade is shown in Fig. I, where the head stream from 
stage I, L; , is fed to stage 3, while the head stream from stage 2 goes to 4. §imi~a~ly~ 
the tail stream L; goes to stage 1, etc. In general, u denotes the ~~rnbe~ of stages ;a 
bead stream moves upward in the cascade, while d denotes the downward move 
of the tail stream. The conventional cascade used for gaseous division has zk = $ = I. 
Values of u and/or d greater than one, however, are useful in certain ap~li~a~io~s~ 
such as enrichment provided by a Becker nozzle [6] or in laser isotope se 
id!. 

Because d= 2 in Fig. 1, the tail streams from stages 1 and 2 constitute the waste 
stream W with assay XiW, a fraction r” of which can be refluxed back to stage 1. Th.e 
product P comes from the head streams of stages 3 and 4, where refluxing into 4 is 
also considered. Refluxing is useful for making small adjustments to the assay A’, (or 
Xi,). Thus, as r’ (Y”) increases from zero, Xi, will increase (XiM? will decrease). 

iscussion presumes isotope i is enriched by the cascade starting from stage I, 
Otherwise it is depleted; i.e., it is enriched downward from stage 4. &Q shown in the 

Xiw C w 

FIG. 1. Schematic for a cascade with u = 2, d = 2, J = 4. 
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figure are the feed streams with assay X,, which go to each stage according to 
distribution numbers Sj. Multiple feed locations are useful for adjusting downward an 
enriched product assay, or adjusting upward a waste assay. These methods may 
prove more economical than, say, reducing the assay of the product stream by mixing 
it with feed material. (This later method of product assay control is used in economic 
studies that compare different enrichment techniques.) 

The stages in a cascade are numbered sequentially from 1 to J, where we assume 
J > 2. The isotopes i are numbered from 1 to 1, where I > 2. Because all X’s are mole 
fractions, we have 

(1) 

Mass balance for isotope i and for the isotopic mixture, per stage, requires 

X,L, = x&L; + x;Ly, j=l,..., J, i=l,..., 1, 

Lj=L; +LI’, j = l,..., J. 

Pa) 

(2b) 

(The quantities Lj, Lj, Ly, F, P, and W must have the same units, which can be 
either a mass unit or mass per unit time.) 

The relationship between the various stages of the cascade are expressed in two 
sets of equations. The first set controls the passage of isotope i: 

r” 5 (XiL); + (XiL)i+ 1 + 6,Xi,F = (XiL), 
j=l 

(34 

r’ i (XiL)j’ + (XiL);-, + 6JXJfF= (XiL),. Pb) 
.j=J-u+ I 

Equation (3a) represents mass balance of isotope i for stage 1, where the left (right) 
side is for incoming (outgoing) material. Intermediate equations would not contain 
reflux terms. As will be shown, there is a change in form when the (XL)” term is 
dropped and when the (XL)’ term first appears. 

The second set of equations is obtained from Eqs. (3) by setting all X’s equal to 
one, and represents the total material flow. Both sets are forj from 1 to J. 

The separation factors ajj and pjj determine the degree of enrichment or depletion 
of isotope i per stage. They are defined by 

X!. 1 - X!! 
a..=--.L!--, 

lJ 1-x; xi; 
i= 1 ,..., I, j = l,..., J, 

and provide the connection with the physics of the enrichment process. 
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2.2. Numerical Formulation 

A convenient starting point is the unit transfer equations 151 that C~II be derkd 

from Eqs. (2) and (4): 

Pijxij 

xE = Uij( 1 - X,) + PijX, g 

L! =_L aij-Pij 

J pij aij - 1 [l $ @ij- 1)xij] Lj> 

L!f=~PU-l 
1 

___ [C!jj( 1 - Xjj) i pijxfj] Lj. 
pij aij - 1 

Equations (5) are used to eliminate head and tail quantities in Eqs. (3), thereby 
obtaining 

d 

CaYlid+ i - Y,,* + r” 2 (aY)ij = - Yilf 
j=I 

(aYh,d+2 - yi,2 = - Yj, 

(a% + CbY)i,Jpd-u 

CbY)i,J-d-u- 

- yi,u+ 1 =- ‘i,u+ lf 

(61 

- yi,J-d = - Yi,J-df 

- Yi,J-d+ 1 = - Yi.J-dfi,f 

(bY)i,J-u- 1 - yi,Jp 1 =- ‘i,J-IJ 

(bY)i,J-u 

where 

,j Pij - ’ 
a..=-, 

aij- 1 

Yij = X,L,, 

a ij - Pi,i b, = 
cqj- 1 5 

Y, = 6,X,F. 

Equations (6) are called the Y equations. They are linear in the Yij and are solved by 
matrix inversion, providing the uij and pij are known. The change in form, mentioned 



322 GEORGE EMANUEL 

after Eqs. (3) can be seen in the u + 1 and J- d + 1 rows. It stems from the 
up/down structure of the cascade. Because of this structure, it is possible to have a 
cascade where a given stage has no entering material. For example, suppose u is 
changed to 3 and 6, = 0 in Fig. 1 then stage 3 has no incoming material. To rule out 
this possibility, each row of (6) is tested with i = 1: 

If 

Ej = Y,, f c (coefficients of all Ylk in row j), j = l,..., J. (9a> 
k 

Ej > 0, j = I,..., J, Pb) 

then material enters each stage, otherwise the cascade’s configuration is discarded. 
A second matrix equation is formed starting from Eqs. (3) with all X’s equal to 

one. This equation is generated from (6) by the transformation: 

bij --$ dj, 

Yijj Lj, 

‘ijf + L jf9 

where 
alj Plj - l 

‘j=pUav- 1 ’ 

(10) 

(11) 
dj = alj -Plj 

Py(“y - l> ’ 

L,y= Y,,- [Cal- l)dY,l,+,-f’ .fJ [Gal - l)dYlj 
j=l 

L,= Y,,- [da, - l)dY,ld+z 

L llflf- - Yl,u+Lf- [Ca, - l)dY,ld+u+l+ [C/4 - l)dY,l, 

L J-df= Y1,J-df- [@I - l)dY,l, + I@, - 1) dY,l,-d-u 

L - ‘LJ-dt If + [@I - 1) dY11J-d-ut 1 J-d+ If- 

(12) 

L~f = y,Jf + [@I - 1) dY,lJ-u + ?.’ j=Ji+, [co1 - WYI, 

We refer to this equation as the L equation; its derivation also requires Eqs. (5), 
written in the form 
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If all the cxij and pjj could be specified as well as the cascade parameters, such as 
4; 1: u,..., the solution would be straightforward. The Y matrix equation woul 
inverted I times and the L equation once. Mole fractions X, are then give 
Eq. (8a), while the heads and tails mole fractions are obtained from Eqs. (5). This 
procedure, unfortunately, is incorrect, since only half of the 2PJ a and ,I3 parameters 
can be arbitrarily specified. The other half must be determined as part of the §~l~t~~n 
process. The reason for this can be seen by writing Eq. (5~) as 

kl 
Lj 

’ aij-Pfj ~1 + uij- 1)x,], 
-pii aij- 1 

i= i 9a.s9 I, j = i,..., J. (14) 

The left-hand side is independent of i. If all the a and p’s could be prescribed, then 
the X’s are readily determined from (5~) and by solving the L equation, without 
invoking the Y equation, or its antecedent, Eq. (3). The only recourse, therefore, is for 
either aij or Pij to be unspecified. Thus, only half of the a and p’s can be arbit~~il~ 
specified. We assume as given, or prescribed 

aij, i= 1 ).,.) I- 1, j= l,...,J, 

Plj, j = I,..., J. 
(15) 

This choice is somewhat arbitrary, but proved computationally convenient. 
The steps involved in iteratively obtaining a solution follow the sequence: 

(I) A first estimate pi;) for the unknown pij is 

pi;’ = 1 + O+l(a,- I), i=2 ,‘*.) 1 - 1, j = I,..., J. 616) 

(2) The aij, b,, cj, and dj, exclusive of i = I, are computed. 
(3) The Y matrix equation is solved for i = 1 ,..., I - 1 by any standar 

inversion routine. (We use Gaussian elimination, but sparse routines would be advan 
tageous for large cascades.) 

(4) Using only the Yij result from step 3, the L matrix equation is solved. 
Ijecause the ollj and pv are prescribed, the solutions for Yjj and Lj are exact and are 
not recomputed in subsequent iterations. 

(5) All Lj and Ly are computed using Eqs. (13). (The calculation is also exact 
and is not recomputed.) Next determine for i = I,..., I - 1, j = I,..., J 

x, = Yij/L j ) 

Xij = b, Yij/Lj) 

X$ = aij Yij/L;. 

(13) 
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(6) A set of a’s, denoted here as &!y), are computed using Eq. (4a) and the X’s 
from step 5. If 

( 
iJ I”ijaif’) j 

< 6 i=2 )...) I- 1, j= l)...) J, 

where E is typically lo-‘, a. converged solution is obtained, and step 8 is then per- 
formed. 

(7) A second Pij estimate is used 

/3;~)=aij-o.l(aij- 1) (19) 

and steps 2, 3, 5, and 6 are repeated. After the first two iterations, the new ,0’s are 
chosen by 

i = 2,..., I- 1, j= l,...,J (20) 

and the above steps are repeated. 
(8) After convergence, the remaining part of the solution is given by 

I-l 

YIj=Lj- 2 Yij, 
i=l 

I-1 

‘;i=Lj - 2 YL, 
i=l 

I-1 

Y;;=LI’- c q;, 

i=I 

where j = l,..., J, and where these equations satisfy Eqs. (1). With these Y’s, the X~j, 
alj, and /Ilj’s are readily obtained. The cascade parameters of physical interest [5] are 
given by 

T= throughput = i Lj, 
j=l 

(224 

P = product = (1 - r’) 5 L;, (22b) 
j=J-ui 1 

W=waste=(l -r”) i L;, 
j=l 

G-1 

B = cascade cut = P/T, (224 
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Xi, = product assay = (1 -r’) <- y,, p L i j 9 
j=J-u4-l 

Xi, = waste assay = 0 ;r’f) f y;;. 
j=l 

(22f) 

This procedure is not presumed to be optimum, nevertheless, in practice 
convergence is rapid. For cascades with J = 20 and 1= 5, convergence occurred by 
112 = 1 when e is lo-‘. 

2.3. I = 2 
On the surface, the algorithm may appear to be incompatible for a cascade where 

1 = 2. I-Iowever, this is not the case. When I = 2, alj and /Iv are prescribed, while ay 
and ,Bv are unknown. Thus, half of the a and p’s are unknown. In fact, the standard 
theory does not define or utilize azj and pZj. Their values, however, are given by the 
algorithm, or directly from Eqs. (4), as 

1 
azj=--, 

a Ij 
82j=& 

regardless of the cascade’s configuration. When enriching U235 the alj and pli are 
chosen, by convention, to be greater than one. Consequently, for the U238 the aZj and 
pZj are less than unity, which, of course, means the U238 is depleted by the cascade. 

When I > 2, no simple equations exist, such as (23). In contrast to (23), the non- 
prescribed a and p’s now depend on many factors including the cascade’s 
configuration (i.e., u, d, r’, r”). This situation means care should be exercised when 
4 > 2 in the physical, or experimental, derivation of the aij and Bij. Over- or under- 
specification must be avoided. The unknown aij and flij, which constitute half of the 
total, are not soley dependent on the physics of the recess, but also depend on the 
cascade’s configuration. Only when I = 2, does the situation simplify to where these 
caveats are unnecessary. 

2.4. Constraints, Assumptions and Input 

One constraint, Eqs. (9), has already been dealt with. It is easy to show, using 
Eq. (4), that if aii < 1, then 

0 < aij <pij < l, PaI 

whereas if aij > 1, then 

1 < Pij < Qfj. (240) 

These inequalities are checked and enforced during the iterative solution process. 
For ease of presentation, we have delayed mentioning a number of assumptions. A 
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TABLE I 

Input Parameters 

Parameter Comments 

I 

J 

tl 

d 

r’ 

r” 

xif 

122 

J>2 

J>U>l 

J>d> 1 

1 >r’>O 

1 >r”>O / 

1 >xif>o; +x,=1 
z 

sj 

F 

aij 

Pij 

l>sj>o; + sj= 1 
,?I 

F>O 

aij # 0, 1; prescribed 
forj = I,..., J 
and i = l,..., I - 1 

pij # 0, 1; prescribed 
forj = l,..., J 
andi= 1 

principal one is that the algorithm requires steady-state, or a cyclic batch, mode of 
operation. A single assay for the feed material is assumed, and refluxing is restricted 
to stages 1 and J. Both of these assumptions, however, are readily removable. 

Required input for a given cascade is shown in Table I, along with bounds or 
constraints that are self-evident. 

3. ILLUSTRATIVE EXAMPLE 

We illustrate the algorithm with a 5-isotope, 20-stage case, described by the 
parameters 

I=5, J=20, u=2, d=l, r’=r”=O, F=l, 

X,= 0.6, Xif= 0.1 (i = 2,..., 5), 

61, = 1, sj = 0 (all otherj), 

a,j = 3, aij = 0.3 (i = 2, 3,4, allj), 

/Iu = 2.5 (allj). 

Figure 2 shows the variation with stage number of the unspecified separation factors. 
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FIG. 2. Variation with stage j of computed c/ and ,LI. 

All of them are below unity, and the jump that occurs atj = 13 is caused by stage 12 
being the feed point. Even though all of the specified aij and pij are constant wish j, 
the computed factors vary from stage to stage. These include the pij in Fig. 2 that 
vary from 0.3505 at j = 1 to 0.3634 at j = 20. Note that 

asj f aij, PSj f Pij 

for i = 2,3,4, even though, for instance, the X, are equal for i > 2. This is a direct 
consequence of Eqs. (l), which are utilized in step 8 of the algorithm. The iar 
decrease of aSj and psj with increasing j means the top of the cascade is more efficient 
in depleting isotope 5 than is the bottom. Because of the low aij and pii tbro~~~out 

TABLE II 

Product and Waste Assays 

1 0.99864 0.57949 
2 0.14910(-3) 0.105i4 
3 0.14910(-3) 0.10514 
4 0.14910(-3) 0.105 14 
5 0.90930(-3) Q.10510 
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the cascade for i = 2,3,4, these isotopes are more rapidly depleted than is isotope 5. 
Only isotope 1, where cyy > 1, is enriched by the cascade. 

The cascade’s overall performance with F = 1 is summarized by 

T= 31.49, P= B=O.O4893, w= 0.95107 

and by Table II for Xi, and Xi,. Almost 5 % of the feed leaves stage 1 in the form of 
99.86% pure isotope 1, whereas the waste material, despite the number of stripping 
stages, is still rich in this isotope. 
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